Struct CompactString
pub struct CompactString(/* private fields */);
Expand description
A CompactString
is a compact string type that can be used almost anywhere a
String
or str
can be used.
§Using CompactString
use compact_str::CompactString;
// CompactString auto derefs into a str so you can use all methods from `str`
// that take a `&self`
if CompactString::new("hello world!").is_ascii() {
println!("we're all ASCII")
}
// You can use a CompactString in collections like you would a String or &str
let mut map: HashMap<CompactString, CompactString> = HashMap::new();
// directly construct a new `CompactString`
map.insert(CompactString::new("nyc"), CompactString::new("empire state building"));
// create a `CompactString` from a `&str`
map.insert("sf".into(), "transamerica pyramid".into());
// create a `CompactString` from a `String`
map.insert(String::from("sea").into(), String::from("space needle").into());
fn wrapped_print<T: AsRef<str>>(text: T) {
println!("{}", text.as_ref());
}
// CompactString impls AsRef<str> and Borrow<str>, so it can be used anywhere
// that expects a generic string
if let Some(building) = map.get("nyc") {
wrapped_print(building);
}
// CompactString can also be directly compared to a String or &str
assert_eq!(CompactString::new("chicago"), "chicago");
assert_eq!(CompactString::new("houston"), String::from("houston"));
§Converting from a String
It’s important that a CompactString
interops well with String
, so you can easily use both in
your code base.
CompactString
implements From<String>
and operates in the following manner:
- Eagerly inlines the string, possibly dropping excess capacity
- Otherwise re-uses the same underlying buffer from
String
use compact_str::CompactString;
// eagerly inlining
let short = String::from("hello world");
let short_c = CompactString::from(short);
assert!(!short_c.is_heap_allocated());
// dropping excess capacity
let mut excess = String::with_capacity(256);
excess.push_str("abc");
let excess_c = CompactString::from(excess);
assert!(!excess_c.is_heap_allocated());
assert!(excess_c.capacity() < 256);
// re-using the same buffer
let long = String::from("this is a longer string that will be heap allocated");
let long_ptr = long.as_ptr();
let long_len = long.len();
let long_cap = long.capacity();
let mut long_c = CompactString::from(long);
assert!(long_c.is_heap_allocated());
let cpt_ptr = long_c.as_ptr();
let cpt_len = long_c.len();
let cpt_cap = long_c.capacity();
// the original String and the CompactString point to the same place in memory, buffer re-use!
assert_eq!(cpt_ptr, long_ptr);
assert_eq!(cpt_len, long_len);
assert_eq!(cpt_cap, long_cap);
§Prevent Eagerly Inlining
A consequence of eagerly inlining is you then need to de-allocate the existing buffer, which
might not always be desirable if you’re converting a very large amount of String
s. If your
code is very sensitive to allocations, consider the CompactString::from_string_buffer
API.
Implementations§
§impl CompactString
impl CompactString
pub fn new<T>(text: T) -> CompactString
pub fn new<T>(text: T) -> CompactString
Creates a new CompactString
from any type that implements AsRef<str>
.
If the string is short enough, then it will be inlined on the stack!
In a static
or const
context you can use the method CompactString::const_new()
.
§Examples
§Inlined
// We can inline strings up to 12 characters long on 32-bit architectures...
#[cfg(target_pointer_width = "32")]
let s = "i'm 12 chars";
// ...and up to 24 characters on 64-bit architectures!
#[cfg(target_pointer_width = "64")]
let s = "i am 24 characters long!";
let compact = CompactString::new(&s);
assert_eq!(compact, s);
// we are not allocated on the heap!
assert!(!compact.is_heap_allocated());
§Heap
// For longer strings though, we get allocated on the heap
let long = "I am a longer string that will be allocated on the heap";
let compact = CompactString::new(long);
assert_eq!(compact, long);
// we are allocated on the heap!
assert!(compact.is_heap_allocated());
§Creation
use compact_str::CompactString;
// Using a `&'static str`
let s = "hello world!";
let hello = CompactString::new(&s);
// Using a `String`
let u = String::from("🦄🌈");
let unicorn = CompactString::new(u);
// Using a `Box<str>`
let b: Box<str> = String::from("📦📦📦").into_boxed_str();
let boxed = CompactString::new(&b);
pub fn try_new<T>(text: T) -> Result<CompactString, ReserveError>
pub fn try_new<T>(text: T) -> Result<CompactString, ReserveError>
Fallible version of CompactString::new()
This method won’t panic if the system is out-of-memory, but return an [ReserveError
].
Otherwise it behaves the same as CompactString::new()
.
pub const fn const_new(text: &'static str) -> CompactString
pub const fn const_new(text: &'static str) -> CompactString
Creates a new inline CompactString
from &'static str
at compile time.
Complexity: O(1). As an optimization, short strings get inlined.
In a dynamic context you can use the method CompactString::new()
.
§Examples
use compact_str::CompactString;
const DEFAULT_NAME: CompactString = CompactString::const_new("untitled");
pub const fn new_inline(text: &'static str) -> CompactString
👎Deprecated since 0.8.0: replaced by CompactString::const_new, will be removed in 0.9.0
pub const fn new_inline(text: &'static str) -> CompactString
Creates a new inline CompactString
at compile time.
pub const fn from_static_str(text: &'static str) -> CompactString
👎Deprecated since 0.8.0: replaced by CompactString::const_new, will be removed in 0.9.0
pub const fn from_static_str(text: &'static str) -> CompactString
Creates a new inline CompactString
from &'static str
at compile time.
pub const fn as_static_str(&self) -> Option<&'static str>
pub const fn as_static_str(&self) -> Option<&'static str>
Get back the &'static str
constructed by CompactString::const_new
.
If the string was short enough that it could be inlined, then it was inline, and
this method will return None
.
§Examples
use compact_str::CompactString;
const DEFAULT_NAME: CompactString =
CompactString::const_new("That is not dead which can eternal lie.");
assert_eq!(
DEFAULT_NAME.as_static_str().unwrap(),
"That is not dead which can eternal lie.",
);
pub fn with_capacity(capacity: usize) -> CompactString
pub fn with_capacity(capacity: usize) -> CompactString
Creates a new empty CompactString
with the capacity to fit at least capacity
bytes.
A CompactString
will inline strings on the stack, if they’re small enough. Specifically,
if the string has a length less than or equal to std::mem::size_of::<String>
bytes
then it will be inlined. This also means that CompactString
s have a minimum capacity
of std::mem::size_of::<String>
.
§Panics
This method panics if the system is out-of-memory.
Use CompactString::try_with_capacity()
if you want to handle such a problem manually.
§Examples
§“zero” Capacity
// Creating a CompactString with a capacity of 0 will create
// one with capacity of std::mem::size_of::<String>();
let empty = CompactString::with_capacity(0);
let min_size = std::mem::size_of::<String>();
assert_eq!(empty.capacity(), min_size);
assert_ne!(0, min_size);
assert!(!empty.is_heap_allocated());
§Max Inline Size
// Creating a CompactString with a capacity of std::mem::size_of::<String>()
// will not heap allocate.
let str_size = std::mem::size_of::<String>();
let empty = CompactString::with_capacity(str_size);
assert_eq!(empty.capacity(), str_size);
assert!(!empty.is_heap_allocated());
§Heap Allocating
// If you create a `CompactString` with a capacity greater than
// `std::mem::size_of::<String>`, it will heap allocated. For heap
// allocated strings we have a minimum capacity
const MIN_HEAP_CAPACITY: usize = std::mem::size_of::<usize>() * 4;
let heap_size = std::mem::size_of::<String>() + 1;
let empty = CompactString::with_capacity(heap_size);
assert_eq!(empty.capacity(), MIN_HEAP_CAPACITY);
assert!(empty.is_heap_allocated());
pub fn try_with_capacity(capacity: usize) -> Result<CompactString, ReserveError>
pub fn try_with_capacity(capacity: usize) -> Result<CompactString, ReserveError>
Fallible version of CompactString::with_capacity()
This method won’t panic if the system is out-of-memory, but return an [ReserveError
].
Otherwise it behaves the same as CompactString::with_capacity()
.
pub fn from_utf8<B>(buf: B) -> Result<CompactString, Utf8Error>
pub fn from_utf8<B>(buf: B) -> Result<CompactString, Utf8Error>
Convert a slice of bytes into a CompactString
.
A CompactString
is a contiguous collection of bytes (u8
s) that is valid UTF-8
.
This method converts from an arbitrary contiguous collection of bytes into a
CompactString
, failing if the provided bytes are not UTF-8
.
Note: If you want to create a CompactString
from a non-contiguous collection of bytes,
enable the bytes
feature of this crate, and see CompactString::from_utf8_buf
§Examples
§Valid UTF-8
let bytes = vec![240, 159, 166, 128, 240, 159, 146, 175];
let compact = CompactString::from_utf8(bytes).expect("valid UTF-8");
assert_eq!(compact, "🦀💯");
§Invalid UTF-8
let bytes = vec![255, 255, 255];
let result = CompactString::from_utf8(bytes);
assert!(result.is_err());
pub unsafe fn from_utf8_unchecked<B>(buf: B) -> CompactString
pub unsafe fn from_utf8_unchecked<B>(buf: B) -> CompactString
Converts a vector of bytes to a CompactString
without checking that the string contains
valid UTF-8.
See the safe version, CompactString::from_utf8
, for more details.
§Safety
This function is unsafe because it does not check that the bytes passed to it are valid
UTF-8. If this constraint is violated, it may cause memory unsafety issues with future users
of the CompactString
, as the rest of the standard library assumes that
CompactString
s are valid UTF-8.
§Examples
Basic usage:
// some bytes, in a vector
let sparkle_heart = vec![240, 159, 146, 150];
let sparkle_heart = unsafe {
CompactString::from_utf8_unchecked(sparkle_heart)
};
assert_eq!("💖", sparkle_heart);
pub fn from_utf16<B>(buf: B) -> Result<CompactString, Utf16Error>
pub fn from_utf16<B>(buf: B) -> Result<CompactString, Utf16Error>
Decode a UTF-16
slice of bytes into a
CompactString
, returning an Err
if the slice contains any invalid data.
§Examples
§Valid UTF-16
let buf: &[u16] = &[0xD834, 0xDD1E, 0x006d, 0x0075, 0x0073, 0x0069, 0x0063];
let compact = CompactString::from_utf16(buf).unwrap();
assert_eq!(compact, "𝄞music");
§Invalid UTF-16
let buf: &[u16] = &[0xD834, 0xDD1E, 0x006d, 0x0075, 0xD800, 0x0069, 0x0063];
let res = CompactString::from_utf16(buf);
assert!(res.is_err());
pub fn from_utf16_lossy<B>(buf: B) -> CompactString
pub fn from_utf16_lossy<B>(buf: B) -> CompactString
Decode a UTF-16–encoded slice v
into a CompactString
, replacing invalid data with
the replacement character (U+FFFD
), �.
§Examples
Basic usage:
// 𝄞mus<invalid>ic<invalid>
let v = &[0xD834, 0xDD1E, 0x006d, 0x0075,
0x0073, 0xDD1E, 0x0069, 0x0063,
0xD834];
assert_eq!(CompactString::from("𝄞mus\u{FFFD}ic\u{FFFD}"),
CompactString::from_utf16_lossy(v));
pub fn len(&self) -> usize
pub fn len(&self) -> usize
Returns the length of the CompactString
in bytes
, not char
s or graphemes.
When using UTF-8
encoding (which all strings in Rust do) a single character will be 1 to 4
bytes long, therefore the return value of this method might not be what a human considers
the length of the string.
§Examples
let ascii = CompactString::new("hello world");
assert_eq!(ascii.len(), 11);
let emoji = CompactString::new("👱");
assert_eq!(emoji.len(), 4);
pub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if the CompactString
has a length of 0, false
otherwise
§Examples
let mut msg = CompactString::new("");
assert!(msg.is_empty());
// add some characters
msg.push_str("hello reader!");
assert!(!msg.is_empty());
pub fn capacity(&self) -> usize
pub fn capacity(&self) -> usize
Returns the capacity of the CompactString
, in bytes.
§Note
- A
CompactString
will always have a capacity of at leaststd::mem::size_of::<String>()
§Examples
§Minimum Size
let min_size = std::mem::size_of::<String>();
let compact = CompactString::new("");
assert!(compact.capacity() >= min_size);
§Heap Allocated
let compact = CompactString::with_capacity(128);
assert_eq!(compact.capacity(), 128);
pub fn reserve(&mut self, additional: usize)
pub fn reserve(&mut self, additional: usize)
Ensures that this CompactString
’s capacity is at least additional
bytes longer than
its length. The capacity may be increased by more than additional
bytes if it chooses,
to prevent frequent reallocations.
§Note
- A
CompactString
will always have at least a capacity ofstd::mem::size_of::<String>()
- Reserving additional bytes may cause the
CompactString
to become heap allocated
§Panics
This method panics if the new capacity overflows usize
or if the system is out-of-memory.
Use CompactString::try_reserve()
if you want to handle such a problem manually.
§Examples
const WORD: usize = std::mem::size_of::<usize>();
let mut compact = CompactString::default();
assert!(compact.capacity() >= (WORD * 3) - 1);
compact.reserve(200);
assert!(compact.is_heap_allocated());
assert!(compact.capacity() >= 200);
pub fn try_reserve(&mut self, additional: usize) -> Result<(), ReserveError>
pub fn try_reserve(&mut self, additional: usize) -> Result<(), ReserveError>
Fallible version of CompactString::reserve()
This method won’t panic if the system is out-of-memory, but return an [ReserveError
]
Otherwise it behaves the same as CompactString::reserve()
.
pub fn as_str(&self) -> &str
pub fn as_str(&self) -> &str
Returns a string slice containing the entire CompactString
.
§Examples
let s = CompactString::new("hello");
assert_eq!(s.as_str(), "hello");
pub fn as_mut_str(&mut self) -> &mut str
pub fn as_mut_str(&mut self) -> &mut str
Returns a mutable string slice containing the entire CompactString
.
§Examples
let mut s = CompactString::new("hello");
s.as_mut_str().make_ascii_uppercase();
assert_eq!(s.as_str(), "HELLO");
pub fn as_bytes(&self) -> &[u8] ⓘ
pub fn as_bytes(&self) -> &[u8] ⓘ
Returns a byte slice of the CompactString
’s contents.
§Examples
let s = CompactString::new("hello");
assert_eq!(&[104, 101, 108, 108, 111], s.as_bytes());
pub unsafe fn as_mut_bytes(&mut self) -> &mut [u8] ⓘ
pub unsafe fn as_mut_bytes(&mut self) -> &mut [u8] ⓘ
Provides a mutable reference to the underlying buffer of bytes.
§Safety
- All Rust strings, including
CompactString
, must be valid UTF-8. The caller must guarantee that any modifications made to the underlying buffer are valid UTF-8.
§Examples
let mut s = CompactString::new("hello");
let slice = unsafe { s.as_mut_bytes() };
// copy bytes into our string
slice[5..11].copy_from_slice(" world".as_bytes());
// set the len of the string
unsafe { s.set_len(11) };
assert_eq!(s, "hello world");
pub fn push(&mut self, ch: char)
pub fn push(&mut self, ch: char)
Appends the given char
to the end of this CompactString
.
§Examples
let mut s = CompactString::new("foo");
s.push('b');
s.push('a');
s.push('r');
assert_eq!("foobar", s);
pub fn pop(&mut self) -> Option<char>
pub fn pop(&mut self) -> Option<char>
Removes the last character from the CompactString
and returns it.
Returns None
if this CompactString
is empty.
§Examples
let mut s = CompactString::new("abc");
assert_eq!(s.pop(), Some('c'));
assert_eq!(s.pop(), Some('b'));
assert_eq!(s.pop(), Some('a'));
assert_eq!(s.pop(), None);
pub fn push_str(&mut self, s: &str)
pub fn push_str(&mut self, s: &str)
Appends a given string slice onto the end of this CompactString
§Examples
let mut s = CompactString::new("abc");
s.push_str("123");
assert_eq!("abc123", s);
pub fn remove(&mut self, idx: usize) -> char
pub fn remove(&mut self, idx: usize) -> char
Removes a char
from this CompactString
at a byte position and returns it.
This is an O(n) operation, as it requires copying every element in the buffer.
§Panics
Panics if idx
is larger than or equal to the CompactString
’s length,
or if it does not lie on a char
boundary.
§Examples
§Basic usage:
let mut c = CompactString::from("hello world");
assert_eq!(c.remove(0), 'h');
assert_eq!(c, "ello world");
assert_eq!(c.remove(5), 'w');
assert_eq!(c, "ello orld");
§Past total length:
let mut c = CompactString::from("hello there!");
c.remove(100);
§Not on char boundary:
let mut c = CompactString::from("🦄");
c.remove(1);
pub unsafe fn set_len(&mut self, new_len: usize)
pub unsafe fn set_len(&mut self, new_len: usize)
Forces the length of the CompactString
to new_len
.
This is a low-level operation that maintains none of the normal invariants for
CompactString
. If you want to modify the CompactString
you should use methods like
push
, push_str
or pop
.
§Safety
new_len
must be less than or equal tocapacity()
- The elements at
old_len..new_len
must be initialized
pub fn is_heap_allocated(&self) -> bool
pub fn is_heap_allocated(&self) -> bool
Returns whether or not the CompactString
is heap allocated.
§Examples
§Inlined
let hello = CompactString::new("hello world");
assert!(!hello.is_heap_allocated());
§Heap Allocated
let msg = CompactString::new("this message will self destruct in 5, 4, 3, 2, 1 💥");
assert!(msg.is_heap_allocated());
pub fn replace_range(
&mut self,
range: impl RangeBounds<usize>,
replace_with: &str,
)
pub fn replace_range( &mut self, range: impl RangeBounds<usize>, replace_with: &str, )
Removes the specified range in the CompactString
,
and replaces it with the given string.
The given string doesn’t need to be the same length as the range.
§Panics
Panics if the starting point or end point do not lie on a char
boundary, or if they’re out of bounds.
§Examples
Basic usage:
let mut s = CompactString::new("Hello, world!");
s.replace_range(7..12, "WORLD");
assert_eq!(s, "Hello, WORLD!");
s.replace_range(7..=11, "you");
assert_eq!(s, "Hello, you!");
s.replace_range(5.., "! Is it me you're looking for?");
assert_eq!(s, "Hello! Is it me you're looking for?");
pub fn repeat(&self, n: usize) -> CompactString
pub fn repeat(&self, n: usize) -> CompactString
Creates a new CompactString
by repeating a string n
times.
§Panics
This function will panic if the capacity would overflow.
§Examples
Basic usage:
use compact_str::CompactString;
assert_eq!(CompactString::new("abc").repeat(4), CompactString::new("abcabcabcabc"));
A panic upon overflow:
use compact_str::CompactString;
// this will panic at runtime
let huge = CompactString::new("0123456789abcdef").repeat(usize::MAX);
pub fn truncate(&mut self, new_len: usize)
pub fn truncate(&mut self, new_len: usize)
Truncate the CompactString
to a shorter length.
If the length of the CompactString
is less or equal to new_len
, the call is a no-op.
Calling this function does not change the capacity of the CompactString
.
§Panics
Panics if the new end of the string does not lie on a char
boundary.
§Examples
Basic usage:
let mut s = CompactString::new("Hello, world!");
s.truncate(5);
assert_eq!(s, "Hello");
pub fn as_ptr(&self) -> *const u8
pub fn as_ptr(&self) -> *const u8
Converts a CompactString
to a raw pointer.
pub fn as_mut_ptr(&mut self) -> *mut u8
pub fn as_mut_ptr(&mut self) -> *mut u8
Converts a mutable CompactString
to a raw pointer.
pub fn insert_str(&mut self, idx: usize, string: &str)
pub fn insert_str(&mut self, idx: usize, string: &str)
Insert string character at an index.
§Examples
Basic usage:
let mut s = CompactString::new("Hello!");
s.insert_str(5, ", world");
assert_eq!(s, "Hello, world!");
pub fn insert(&mut self, idx: usize, ch: char)
pub fn insert(&mut self, idx: usize, ch: char)
Insert a character at an index.
§Examples
Basic usage:
let mut s = CompactString::new("Hello world!");
s.insert(5, ',');
assert_eq!(s, "Hello, world!");
pub fn clear(&mut self)
pub fn clear(&mut self)
Reduces the length of the CompactString
to zero.
Calling this function does not change the capacity of the CompactString
.
let mut s = CompactString::new("Rust is the most loved language on Stackoverflow!");
assert_eq!(s.capacity(), 49);
s.clear();
assert_eq!(s, "");
assert_eq!(s.capacity(), 49);
pub fn split_off(&mut self, at: usize) -> CompactString
pub fn split_off(&mut self, at: usize) -> CompactString
Split the CompactString
into at the given byte index.
Calling this function does not change the capacity of the CompactString
, unless the
CompactString
is backed by a &'static str
.
§Panics
Panics if at
does not lie on a char
boundary.
Basic usage:
let mut s = CompactString::const_new("Hello, world!");
let w = s.split_off(5);
assert_eq!(w, ", world!");
assert_eq!(s, "Hello");
pub fn drain(&mut self, range: impl RangeBounds<usize>) -> Drain<'_>
pub fn drain(&mut self, range: impl RangeBounds<usize>) -> Drain<'_>
Remove a range from the CompactString
, and return it as an iterator.
Calling this function does not change the capacity of the CompactString
.
§Panics
Panics if the start or end of the range does not lie on a char
boundary.
§Examples
Basic usage:
let mut s = CompactString::new("Hello, world!");
let mut d = s.drain(5..12);
assert_eq!(d.next(), Some(',')); // iterate over the extracted data
assert_eq!(d.as_str(), " world"); // or get the whole data as &str
// The iterator keeps a reference to `s`, so you have to drop() the iterator,
// before you can access `s` again.
drop(d);
assert_eq!(s, "Hello!");
pub fn shrink_to(&mut self, min_capacity: usize)
pub fn shrink_to(&mut self, min_capacity: usize)
Shrinks the capacity of this CompactString
with a lower bound.
The resulting capactity is never less than the size of 3×usize
,
i.e. the capacity than can be inlined.
§Examples
Basic usage:
let mut s = CompactString::with_capacity(100);
assert_eq!(s.capacity(), 100);
// if the capacity was already bigger than the argument, the call is a no-op
s.shrink_to(100);
assert_eq!(s.capacity(), 100);
s.shrink_to(50);
assert_eq!(s.capacity(), 50);
// if the string can be inlined, it is
s.shrink_to(10);
assert_eq!(s.capacity(), 3 * std::mem::size_of::<usize>());
pub fn shrink_to_fit(&mut self)
pub fn shrink_to_fit(&mut self)
Shrinks the capacity of this CompactString
to match its length.
The resulting capactity is never less than the size of 3×usize
,
i.e. the capacity than can be inlined.
This method is effectively the same as calling [string.shrink_to(0)
].
§Examples
Basic usage:
let mut s = CompactString::from("This is a string with more than 24 characters.");
s.reserve(100);
assert!(s.capacity() >= 100);
s.shrink_to_fit();
assert_eq!(s.len(), s.capacity());
let mut s = CompactString::from("short string");
s.reserve(100);
assert!(s.capacity() >= 100);
s.shrink_to_fit();
assert_eq!(s.capacity(), 3 * std::mem::size_of::<usize>());
pub fn retain(&mut self, predicate: impl FnMut(char) -> bool)
pub fn retain(&mut self, predicate: impl FnMut(char) -> bool)
Retains only the characters specified by the predicate.
The method iterates over the characters in the string and calls the predicate
.
If the predicate
returns false
, then the character gets removed.
If the predicate
returns true
, then the character is kept.
§Examples
let mut s = CompactString::from("äb𝄞d€");
let keep = [false, true, true, false, true];
let mut iter = keep.iter();
s.retain(|_| *iter.next().unwrap());
assert_eq!(s, "b𝄞€");
pub fn from_utf8_lossy(v: &[u8]) -> CompactString
pub fn from_utf8_lossy(v: &[u8]) -> CompactString
Decode a bytes slice as UTF-8 string, replacing any illegal codepoints
§Examples
let chess_knight = b"\xf0\x9f\xa8\x84";
assert_eq!(
"🨄",
CompactString::from_utf8_lossy(chess_knight),
);
// For valid UTF-8 slices, this is the same as:
assert_eq!(
"🨄",
CompactString::new(std::str::from_utf8(chess_knight).unwrap()),
);
Incorrect bytes:
let broken = b"\xf0\x9f\xc8\x84";
assert_eq!(
"�Ȅ",
CompactString::from_utf8_lossy(broken),
);
// For invalid UTF-8 slices, this is an optimized implemented for:
assert_eq!(
"�Ȅ",
CompactString::from(String::from_utf8_lossy(broken)),
);
pub fn from_utf16le(v: impl AsRef<[u8]>) -> Result<CompactString, Utf16Error>
pub fn from_utf16le(v: impl AsRef<[u8]>) -> Result<CompactString, Utf16Error>
Decode a slice of bytes as UTF-16 encoded string, in little endian.
§Errors
If the slice has an odd number of bytes, or if it did not contain valid UTF-16 characters,
a [Utf16Error
] is returned.
§Examples
const DANCING_MEN: &[u8] = b"\x3d\xd8\x6f\xdc\x0d\x20\x42\x26\x0f\xfe";
let dancing_men = CompactString::from_utf16le(DANCING_MEN).unwrap();
assert_eq!(dancing_men, "👯♂️");
pub fn from_utf16be(v: impl AsRef<[u8]>) -> Result<CompactString, Utf16Error>
pub fn from_utf16be(v: impl AsRef<[u8]>) -> Result<CompactString, Utf16Error>
Decode a slice of bytes as UTF-16 encoded string, in big endian.
§Errors
If the slice has an odd number of bytes, or if it did not contain valid UTF-16 characters,
a [Utf16Error
] is returned.
§Examples
const DANCING_WOMEN: &[u8] = b"\xd8\x3d\xdc\x6f\x20\x0d\x26\x40\xfe\x0f";
let dancing_women = CompactString::from_utf16be(DANCING_WOMEN).unwrap();
assert_eq!(dancing_women, "👯♀️");
pub fn from_utf16le_lossy(v: impl AsRef<[u8]>) -> CompactString
pub fn from_utf16le_lossy(v: impl AsRef<[u8]>) -> CompactString
Lossy decode a slice of bytes as UTF-16 encoded string, in little endian.
In this context “lossy” means that any broken characters in the input are replaced by the
<REPLACEMENT CHARACTER> '�'
. Please notice that, unlike UTF-8, UTF-16 is not self
synchronizing. I.e. if a byte in the input is dropped, all following data is broken.
§Examples
// A "random" bit was flipped in the 4th byte:
const DANCING_MEN: &[u8] = b"\x3d\xd8\x6f\xfc\x0d\x20\x42\x26\x0f\xfe";
let dancing_men = CompactString::from_utf16le_lossy(DANCING_MEN);
assert_eq!(dancing_men, "�\u{fc6f}\u{200d}♂️");
pub fn from_utf16be_lossy(v: impl AsRef<[u8]>) -> CompactString
pub fn from_utf16be_lossy(v: impl AsRef<[u8]>) -> CompactString
Lossy decode a slice of bytes as UTF-16 encoded string, in big endian.
In this context “lossy” means that any broken characters in the input are replaced by the
<REPLACEMENT CHARACTER> '�'
. Please notice that, unlike UTF-8, UTF-16 is not self
synchronizing. I.e. if a byte in the input is dropped, all following data is broken.
§Examples
// A "random" bit was flipped in the 9th byte:
const DANCING_WOMEN: &[u8] = b"\xd8\x3d\xdc\x6f\x20\x0d\x26\x40\xde\x0f";
let dancing_women = CompactString::from_utf16be_lossy(DANCING_WOMEN);
assert_eq!(dancing_women, "👯\u{200d}♀�");
pub fn into_string(self) -> String
pub fn into_string(self) -> String
Convert the CompactString
into a String
.
§Examples
let s = CompactString::new("Hello world");
let s = s.into_string();
assert_eq!(s, "Hello world");
pub fn from_string_buffer(s: String) -> CompactString
pub fn from_string_buffer(s: String) -> CompactString
Convert a String
into a CompactString
without inlining.
Note: You probably don’t need to use this method, instead you should use From<String>
which is implemented for CompactString
.
This method exists incase your code is very sensitive to memory allocations. Normally when
converting a String
to a CompactString
we’ll inline short strings onto the stack.
But this results in Drop
-ing the original String
, which causes memory it owned on
the heap to be deallocated. Instead when using this method, we always reuse the buffer that
was previously owned by the String
, so no trips to the allocator are needed.
§Examples
§Short Strings
use compact_str::CompactString;
let short = "hello world".to_string();
let c_heap = CompactString::from_string_buffer(short);
// using CompactString::from_string_buffer, we'll re-use the String's underlying buffer
assert!(c_heap.is_heap_allocated());
// note: when Clone-ing a short heap allocated string, we'll eagerly inline at that point
let c_inline = c_heap.clone();
assert!(!c_inline.is_heap_allocated());
assert_eq!(c_heap, c_inline);
§Longer Strings
use compact_str::CompactString;
let x = "longer string that will be on the heap".to_string();
let c1 = CompactString::from(x);
let y = "longer string that will be on the heap".to_string();
let c2 = CompactString::from_string_buffer(y);
// for longer strings, we re-use the underlying String's buffer in both cases
assert!(c1.is_heap_allocated());
assert!(c2.is_heap_allocated());
§Buffer Re-use
use compact_str::CompactString;
let og = "hello world".to_string();
let og_addr = og.as_ptr();
let mut c = CompactString::from_string_buffer(og);
let ex_addr = c.as_ptr();
// When converting to/from String and CompactString with from_string_buffer we always re-use
// the same underlying allocated memory/buffer
assert_eq!(og_addr, ex_addr);
let long = "this is a long string that will be on the heap".to_string();
let long_addr = long.as_ptr();
let mut long_c = CompactString::from(long);
let long_ex_addr = long_c.as_ptr();
// When converting to/from String and CompactString with From<String>, we'll also re-use the
// underlying buffer, if the string is long, otherwise when converting to CompactString we
// eagerly inline
assert_eq!(long_addr, long_ex_addr);
pub fn to_ascii_lowercase(&self) -> CompactString
pub fn to_ascii_lowercase(&self) -> CompactString
Returns a copy of this string where each character is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use str::make_ascii_lowercase
.
To lowercase ASCII characters in addition to non-ASCII characters, use
CompactString::to_lowercase
.
§Examples
use compact_str::CompactString;
let s = CompactString::new("Grüße, Jürgen ❤");
assert_eq!("grüße, jürgen ❤", s.to_ascii_lowercase());
pub fn to_ascii_uppercase(&self) -> CompactString
pub fn to_ascii_uppercase(&self) -> CompactString
Returns a copy of this string where each character is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use str::make_ascii_uppercase
.
To uppercase ASCII characters in addition to non-ASCII characters, use
CompactString::to_uppercase
.
§Examples
use compact_str::CompactString;
let s = CompactString::new("Grüße, Jürgen ❤");
assert_eq!("GRüßE, JüRGEN ❤", s.to_ascii_uppercase());
pub fn to_lowercase(&self) -> CompactString
pub fn to_lowercase(&self) -> CompactString
Returns the lowercase equivalent of this string slice, as a new CompactString
.
‘Lowercase’ is defined according to the terms of the Unicode Derived Core Property
Lowercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a CompactString
instead of modifying the
parameter in-place.
§Examples
Basic usage:
use compact_str::CompactString;
let s = CompactString::new("HELLO");
assert_eq!("hello", s.to_lowercase());
A tricky example, with sigma:
use compact_str::CompactString;
let sigma = CompactString::new("Σ");
assert_eq!("σ", sigma.to_lowercase());
// but at the end of a word, it's ς, not σ:
let odysseus = CompactString::new("ὈΔΥΣΣΕΎΣ");
assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());
Languages without case are not changed:
use compact_str::CompactString;
let new_year = CompactString::new("农历新年");
assert_eq!(new_year, new_year.to_lowercase());
pub fn from_str_to_lowercase(input: &str) -> CompactString
pub fn from_str_to_lowercase(input: &str) -> CompactString
Returns the lowercase equivalent of this string slice, as a new CompactString
.
‘Lowercase’ is defined according to the terms of the Unicode Derived Core Property
Lowercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a CompactString
instead of modifying the
parameter in-place.
§Examples
Basic usage:
use compact_str::CompactString;
assert_eq!("hello", CompactString::from_str_to_lowercase("HELLO"));
A tricky example, with sigma:
use compact_str::CompactString;
assert_eq!("σ", CompactString::from_str_to_lowercase("Σ"));
// but at the end of a word, it's ς, not σ:
assert_eq!("ὀδυσσεύς", CompactString::from_str_to_lowercase("ὈΔΥΣΣΕΎΣ"));
Languages without case are not changed:
use compact_str::CompactString;
let new_year = "农历新年";
assert_eq!(new_year, CompactString::from_str_to_lowercase(new_year));
pub fn to_uppercase(&self) -> CompactString
pub fn to_uppercase(&self) -> CompactString
Returns the uppercase equivalent of this string slice, as a new CompactString
.
‘Uppercase’ is defined according to the terms of the Unicode Derived Core Property
Uppercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a CompactString
instead of modifying the
parameter in-place.
§Examples
Basic usage:
use compact_str::CompactString;
let s = CompactString::new("hello");
assert_eq!("HELLO", s.to_uppercase());
Scripts without case are not changed:
use compact_str::CompactString;
let new_year = CompactString::new("农历新年");
assert_eq!(new_year, new_year.to_uppercase());
One character can become multiple:
use compact_str::CompactString;
let s = CompactString::new("tschüß");
assert_eq!("TSCHÜSS", s.to_uppercase());
pub fn from_str_to_uppercase(input: &str) -> CompactString
pub fn from_str_to_uppercase(input: &str) -> CompactString
Returns the uppercase equivalent of this string slice, as a new CompactString
.
‘Uppercase’ is defined according to the terms of the Unicode Derived Core Property
Uppercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a CompactString
instead of modifying the
parameter in-place.
§Examples
Basic usage:
use compact_str::CompactString;
assert_eq!("HELLO", CompactString::from_str_to_uppercase("hello"));
Scripts without case are not changed:
use compact_str::CompactString;
let new_year = "农历新年";
assert_eq!(new_year, CompactString::from_str_to_uppercase(new_year));
One character can become multiple:
use compact_str::CompactString;
assert_eq!("TSCHÜSS", CompactString::from_str_to_uppercase("tschüß"));
Methods from Deref<Target = str>§
1.0.0 · sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if self
has a length of zero bytes.
§Examples
let s = "";
assert!(s.is_empty());
let s = "not empty";
assert!(!s.is_empty());
1.9.0 · sourcepub fn is_char_boundary(&self, index: usize) -> bool
pub fn is_char_boundary(&self, index: usize) -> bool
Checks that index
-th byte is the first byte in a UTF-8 code point
sequence or the end of the string.
The start and end of the string (when index == self.len()
) are
considered to be boundaries.
Returns false
if index
is greater than self.len()
.
§Examples
let s = "Löwe 老虎 Léopard";
assert!(s.is_char_boundary(0));
// start of `老`
assert!(s.is_char_boundary(6));
assert!(s.is_char_boundary(s.len()));
// second byte of `ö`
assert!(!s.is_char_boundary(2));
// third byte of `老`
assert!(!s.is_char_boundary(8));
sourcepub fn floor_char_boundary(&self, index: usize) -> usize
🔬This is a nightly-only experimental API. (round_char_boundary
)
pub fn floor_char_boundary(&self, index: usize) -> usize
round_char_boundary
)Finds the closest x
not exceeding index
where is_char_boundary(x)
is true
.
This method can help you truncate a string so that it’s still valid UTF-8, but doesn’t exceed a given number of bytes. Note that this is done purely at the character level and can still visually split graphemes, even though the underlying characters aren’t split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only includes 🧑 (person) instead.
§Examples
#![feature(round_char_boundary)]
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));
let closest = s.floor_char_boundary(13);
assert_eq!(closest, 10);
assert_eq!(&s[..closest], "❤️🧡");
sourcepub fn ceil_char_boundary(&self, index: usize) -> usize
🔬This is a nightly-only experimental API. (round_char_boundary
)
pub fn ceil_char_boundary(&self, index: usize) -> usize
round_char_boundary
)Finds the closest x
not below index
where is_char_boundary(x)
is true
.
If index
is greater than the length of the string, this returns the length of the string.
This method is the natural complement to floor_char_boundary
. See that method
for more details.
§Examples
#![feature(round_char_boundary)]
let s = "❤️🧡💛💚💙💜";
assert_eq!(s.len(), 26);
assert!(!s.is_char_boundary(13));
let closest = s.ceil_char_boundary(13);
assert_eq!(closest, 14);
assert_eq!(&s[..closest], "❤️🧡💛");
1.20.0 · sourcepub unsafe fn as_bytes_mut(&mut self) -> &mut [u8] ⓘ
pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8] ⓘ
Converts a mutable string slice to a mutable byte slice.
§Safety
The caller must ensure that the content of the slice is valid UTF-8
before the borrow ends and the underlying str
is used.
Use of a str
whose contents are not valid UTF-8 is undefined behavior.
§Examples
Basic usage:
let mut s = String::from("Hello");
let bytes = unsafe { s.as_bytes_mut() };
assert_eq!(b"Hello", bytes);
Mutability:
let mut s = String::from("🗻∈🌏");
unsafe {
let bytes = s.as_bytes_mut();
bytes[0] = 0xF0;
bytes[1] = 0x9F;
bytes[2] = 0x8D;
bytes[3] = 0x94;
}
assert_eq!("🍔∈🌏", s);
1.0.0 · sourcepub fn as_ptr(&self) -> *const u8
pub fn as_ptr(&self) -> *const u8
Converts a string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8
. This pointer will be pointing to the first byte of the string
slice.
The caller must ensure that the returned pointer is never written to.
If you need to mutate the contents of the string slice, use as_mut_ptr
.
§Examples
let s = "Hello";
let ptr = s.as_ptr();
1.36.0 · sourcepub fn as_mut_ptr(&mut self) -> *mut u8
pub fn as_mut_ptr(&mut self) -> *mut u8
Converts a mutable string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8
. This pointer will be pointing to the first byte of the string
slice.
It is your responsibility to make sure that the string slice only gets modified in a way that it remains valid UTF-8.
1.20.0 · sourcepub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
Returns a subslice of str
.
This is the non-panicking alternative to indexing the str
. Returns
None
whenever equivalent indexing operation would panic.
§Examples
let v = String::from("🗻∈🌏");
assert_eq!(Some("🗻"), v.get(0..4));
// indices not on UTF-8 sequence boundaries
assert!(v.get(1..).is_none());
assert!(v.get(..8).is_none());
// out of bounds
assert!(v.get(..42).is_none());
1.20.0 · sourcepub fn get_mut<I>(
&mut self,
i: I,
) -> Option<&mut <I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
pub fn get_mut<I>(
&mut self,
i: I,
) -> Option<&mut <I as SliceIndex<str>>::Output>where
I: SliceIndex<str>,
Returns a mutable subslice of str
.
This is the non-panicking alternative to indexing the str
. Returns
None
whenever equivalent indexing operation would panic.
§Examples
let mut v = String::from("hello");
// correct length
assert!(v.get_mut(0..5).is_some());
// out of bounds
assert!(v.get_mut(..42).is_none());
assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
assert_eq!("hello", v);
{
let s = v.get_mut(0..2);
let s = s.map(|s| {
s.make_ascii_uppercase();
&*s
});
assert_eq!(Some("HE"), s);
}
assert_eq!("HEllo", v);
1.20.0 · sourcepub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
Returns an unchecked subslice of str
.
This is the unchecked alternative to indexing the str
.
§Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must not exceed the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str
type.
§Examples
let v = "🗻∈🌏";
unsafe {
assert_eq!("🗻", v.get_unchecked(0..4));
assert_eq!("∈", v.get_unchecked(4..7));
assert_eq!("🌏", v.get_unchecked(7..11));
}
1.20.0 · sourcepub unsafe fn get_unchecked_mut<I>(
&mut self,
i: I,
) -> &mut <I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
pub unsafe fn get_unchecked_mut<I>(
&mut self,
i: I,
) -> &mut <I as SliceIndex<str>>::Outputwhere
I: SliceIndex<str>,
Returns a mutable, unchecked subslice of str
.
This is the unchecked alternative to indexing the str
.
§Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must not exceed the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str
type.
§Examples
let mut v = String::from("🗻∈🌏");
unsafe {
assert_eq!("🗻", v.get_unchecked_mut(0..4));
assert_eq!("∈", v.get_unchecked_mut(4..7));
assert_eq!("🌏", v.get_unchecked_mut(7..11));
}
1.0.0 · sourcepub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
👎Deprecated since 1.29.0: use get_unchecked(begin..end)
instead
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
get_unchecked(begin..end)
insteadCreates a string slice from another string slice, bypassing safety checks.
This is generally not recommended, use with caution! For a safe
alternative see str
and Index
.
This new slice goes from begin
to end
, including begin
but
excluding end
.
To get a mutable string slice instead, see the
slice_mut_unchecked
method.
§Safety
Callers of this function are responsible that three preconditions are satisfied:
begin
must not exceedend
.begin
andend
must be byte positions within the string slice.begin
andend
must lie on UTF-8 sequence boundaries.
§Examples
let s = "Löwe 老虎 Léopard";
unsafe {
assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
}
let s = "Hello, world!";
unsafe {
assert_eq!("world", s.slice_unchecked(7, 12));
}
1.5.0 · sourcepub unsafe fn slice_mut_unchecked(
&mut self,
begin: usize,
end: usize,
) -> &mut str
👎Deprecated since 1.29.0: use get_unchecked_mut(begin..end)
instead
pub unsafe fn slice_mut_unchecked( &mut self, begin: usize, end: usize, ) -> &mut str
get_unchecked_mut(begin..end)
insteadCreates a string slice from another string slice, bypassing safety checks.
This is generally not recommended, use with caution! For a safe
alternative see str
and IndexMut
.
This new slice goes from begin
to end
, including begin
but
excluding end
.
To get an immutable string slice instead, see the
slice_unchecked
method.
§Safety
Callers of this function are responsible that three preconditions are satisfied:
begin
must not exceedend
.begin
andend
must be byte positions within the string slice.begin
andend
must lie on UTF-8 sequence boundaries.
1.4.0 · sourcepub fn split_at(&self, mid: usize) -> (&str, &str)
pub fn split_at(&self, mid: usize) -> (&str, &str)
Divides one string slice into two at an index.
The argument, mid
, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get mutable string slices instead, see the split_at_mut
method.
§Panics
Panics if mid
is not on a UTF-8 code point boundary, or if it is past
the end of the last code point of the string slice. For a non-panicking
alternative see split_at_checked
.
§Examples
let s = "Per Martin-Löf";
let (first, last) = s.split_at(3);
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);
1.4.0 · sourcepub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str)
pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str)
Divides one mutable string slice into two at an index.
The argument, mid
, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get immutable string slices instead, see the split_at
method.
§Panics
Panics if mid
is not on a UTF-8 code point boundary, or if it is past
the end of the last code point of the string slice. For a non-panicking
alternative see split_at_mut_checked
.
§Examples
let mut s = "Per Martin-Löf".to_string();
{
let (first, last) = s.split_at_mut(3);
first.make_ascii_uppercase();
assert_eq!("PER", first);
assert_eq!(" Martin-Löf", last);
}
assert_eq!("PER Martin-Löf", s);
1.80.0 · sourcepub fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)>
pub fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)>
Divides one string slice into two at an index.
The argument, mid
, should be a valid byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point. The
method returns None
if that’s not the case.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get mutable string slices instead, see the split_at_mut_checked
method.
§Examples
let s = "Per Martin-Löf";
let (first, last) = s.split_at_checked(3).unwrap();
assert_eq!("Per", first);
assert_eq!(" Martin-Löf", last);
assert_eq!(None, s.split_at_checked(13)); // Inside “ö”
assert_eq!(None, s.split_at_checked(16)); // Beyond the string length
1.80.0 · sourcepub fn split_at_mut_checked(
&mut self,
mid: usize,
) -> Option<(&mut str, &mut str)>
pub fn split_at_mut_checked( &mut self, mid: usize, ) -> Option<(&mut str, &mut str)>
Divides one mutable string slice into two at an index.
The argument, mid
, should be a valid byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point. The
method returns None
if that’s not the case.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get immutable string slices instead, see the split_at_checked
method.
§Examples
let mut s = "Per Martin-Löf".to_string();
if let Some((first, last)) = s.split_at_mut_checked(3) {
first.make_ascii_uppercase();
assert_eq!("PER", first);
assert_eq!(" Martin-Löf", last);
}
assert_eq!("PER Martin-Löf", s);
assert_eq!(None, s.split_at_mut_checked(13)); // Inside “ö”
assert_eq!(None, s.split_at_mut_checked(16)); // Beyond the string length
1.0.0 · sourcepub fn chars(&self) -> Chars<'_> ⓘ
pub fn chars(&self) -> Chars<'_> ⓘ
Returns an iterator over the char
s of a string slice.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char
. This method returns such an iterator.
It’s important to remember that char
represents a Unicode Scalar
Value, and might not match your idea of what a ‘character’ is. Iteration
over grapheme clusters may be what you actually want. This functionality
is not provided by Rust’s standard library, check crates.io instead.
§Examples
Basic usage:
let word = "goodbye";
let count = word.chars().count();
assert_eq!(7, count);
let mut chars = word.chars();
assert_eq!(Some('g'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('o'), chars.next());
assert_eq!(Some('d'), chars.next());
assert_eq!(Some('b'), chars.next());
assert_eq!(Some('y'), chars.next());
assert_eq!(Some('e'), chars.next());
assert_eq!(None, chars.next());
Remember, char
s might not match your intuition about characters:
let y = "y̆";
let mut chars = y.chars();
assert_eq!(Some('y'), chars.next()); // not 'y̆'
assert_eq!(Some('\u{0306}'), chars.next());
assert_eq!(None, chars.next());
1.0.0 · sourcepub fn char_indices(&self) -> CharIndices<'_> ⓘ
pub fn char_indices(&self) -> CharIndices<'_> ⓘ
Returns an iterator over the char
s of a string slice, and their
positions.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char
. This method returns an iterator of both
these char
s, as well as their byte positions.
The iterator yields tuples. The position is first, the char
is
second.
§Examples
Basic usage:
let word = "goodbye";
let count = word.char_indices().count();
assert_eq!(7, count);
let mut char_indices = word.char_indices();
assert_eq!(Some((0, 'g')), char_indices.next());
assert_eq!(Some((1, 'o')), char_indices.next());
assert_eq!(Some((2, 'o')), char_indices.next());
assert_eq!(Some((3, 'd')), char_indices.next());
assert_eq!(Some((4, 'b')), char_indices.next());
assert_eq!(Some((5, 'y')), char_indices.next());
assert_eq!(Some((6, 'e')), char_indices.next());
assert_eq!(None, char_indices.next());
Remember, char
s might not match your intuition about characters:
let yes = "y̆es";
let mut char_indices = yes.char_indices();
assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
assert_eq!(Some((1, '\u{0306}')), char_indices.next());
// note the 3 here - the previous character took up two bytes
assert_eq!(Some((3, 'e')), char_indices.next());
assert_eq!(Some((4, 's')), char_indices.next());
assert_eq!(None, char_indices.next());
1.0.0 · sourcepub fn bytes(&self) -> Bytes<'_> ⓘ
pub fn bytes(&self) -> Bytes<'_> ⓘ
Returns an iterator over the bytes of a string slice.
As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.
§Examples
let mut bytes = "bors".bytes();
assert_eq!(Some(b'b'), bytes.next());
assert_eq!(Some(b'o'), bytes.next());
assert_eq!(Some(b'r'), bytes.next());
assert_eq!(Some(b's'), bytes.next());
assert_eq!(None, bytes.next());
1.1.0 · sourcepub fn split_whitespace(&self) -> SplitWhitespace<'_> ⓘ
pub fn split_whitespace(&self) -> SplitWhitespace<'_> ⓘ
Splits a string slice by whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
. If you only want to split on ASCII whitespace
instead, use split_ascii_whitespace
.
§Examples
Basic usage:
let mut iter = "A few words".split_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());
All kinds of whitespace are considered:
let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());
If the string is empty or all whitespace, the iterator yields no string slices:
assert_eq!("".split_whitespace().next(), None);
assert_eq!(" ".split_whitespace().next(), None);
1.34.0 · sourcepub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> ⓘ
pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> ⓘ
Splits a string slice by ASCII whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of ASCII whitespace.
To split by Unicode Whitespace
instead, use split_whitespace
.
§Examples
Basic usage:
let mut iter = "A few words".split_ascii_whitespace();
assert_eq!(Some("A"), iter.next());
assert_eq!(Some("few"), iter.next());
assert_eq!(Some("words"), iter.next());
assert_eq!(None, iter.next());
All kinds of ASCII whitespace are considered:
let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
assert_eq!(Some("Mary"), iter.next());
assert_eq!(Some("had"), iter.next());
assert_eq!(Some("a"), iter.next());
assert_eq!(Some("little"), iter.next());
assert_eq!(Some("lamb"), iter.next());
assert_eq!(None, iter.next());
If the string is empty or all ASCII whitespace, the iterator yields no string slices:
assert_eq!("".split_ascii_whitespace().next(), None);
assert_eq!(" ".split_ascii_whitespace().next(), None);
1.0.0 · sourcepub fn lines(&self) -> Lines<'_> ⓘ
pub fn lines(&self) -> Lines<'_> ⓘ
Returns an iterator over the lines of a string, as string slices.
Lines are split at line endings that are either newlines (\n
) or
sequences of a carriage return followed by a line feed (\r\n
).
Line terminators are not included in the lines returned by the iterator.
Note that any carriage return (\r
) not immediately followed by a
line feed (\n
) does not split a line. These carriage returns are
thereby included in the produced lines.
The final line ending is optional. A string that ends with a final line ending will return the same lines as an otherwise identical string without a final line ending.
§Examples
Basic usage:
let text = "foo\r\nbar\n\nbaz\r";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
// Trailing carriage return is included in the last line
assert_eq!(Some("baz\r"), lines.next());
assert_eq!(None, lines.next());
The final line does not require any ending:
let text = "foo\nbar\n\r\nbaz";
let mut lines = text.lines();
assert_eq!(Some("foo"), lines.next());
assert_eq!(Some("bar"), lines.next());
assert_eq!(Some(""), lines.next());
assert_eq!(Some("baz"), lines.next());
assert_eq!(None, lines.next());
1.0.0 · sourcepub fn lines_any(&self) -> LinesAny<'_> ⓘ
👎Deprecated since 1.4.0: use lines() instead now
pub fn lines_any(&self) -> LinesAny<'_> ⓘ
Returns an iterator over the lines of a string.
1.8.0 · sourcepub fn encode_utf16(&self) -> EncodeUtf16<'_> ⓘ
pub fn encode_utf16(&self) -> EncodeUtf16<'_> ⓘ
Returns an iterator of u16
over the string encoded as UTF-16.
§Examples
let text = "Zażółć gęślą jaźń";
let utf8_len = text.len();
let utf16_len = text.encode_utf16().count();
assert!(utf16_len <= utf8_len);
1.0.0 · sourcepub fn contains<P>(&self, pat: P) -> boolwhere
P: Pattern,
pub fn contains<P>(&self, pat: P) -> boolwhere
P: Pattern,
Returns true
if the given pattern matches a sub-slice of
this string slice.
Returns false
if it does not.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
let bananas = "bananas";
assert!(bananas.contains("nana"));
assert!(!bananas.contains("apples"));
1.0.0 · sourcepub fn starts_with<P>(&self, pat: P) -> boolwhere
P: Pattern,
pub fn starts_with<P>(&self, pat: P) -> boolwhere
P: Pattern,
Returns true
if the given pattern matches a prefix of this
string slice.
Returns false
if it does not.
The pattern can be a &str
, in which case this function will return true if
the &str
is a prefix of this string slice.
The pattern can also be a char
, a slice of char
s, or a
function or closure that determines if a character matches.
These will only be checked against the first character of this string slice.
Look at the second example below regarding behavior for slices of char
s.
§Examples
let bananas = "bananas";
assert!(bananas.starts_with("bana"));
assert!(!bananas.starts_with("nana"));
let bananas = "bananas";
// Note that both of these assert successfully.
assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1.0.0 · sourcepub fn ends_with<P>(&self, pat: P) -> bool
pub fn ends_with<P>(&self, pat: P) -> bool
Returns true
if the given pattern matches a suffix of this
string slice.
Returns false
if it does not.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
let bananas = "bananas";
assert!(bananas.ends_with("anas"));
assert!(!bananas.ends_with("nana"));
1.0.0 · sourcepub fn find<P>(&self, pat: P) -> Option<usize>where
P: Pattern,
pub fn find<P>(&self, pat: P) -> Option<usize>where
P: Pattern,
Returns the byte index of the first character of this string slice that matches the pattern.
Returns None
if the pattern doesn’t match.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.find('L'), Some(0));
assert_eq!(s.find('é'), Some(14));
assert_eq!(s.find("pard"), Some(17));
More complex patterns using point-free style and closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.find(char::is_whitespace), Some(5));
assert_eq!(s.find(char::is_lowercase), Some(1));
assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
Not finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.find(x), None);
1.0.0 · sourcepub fn rfind<P>(&self, pat: P) -> Option<usize>
pub fn rfind<P>(&self, pat: P) -> Option<usize>
Returns the byte index for the first character of the last match of the pattern in this string slice.
Returns None
if the pattern doesn’t match.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
Simple patterns:
let s = "Löwe 老虎 Léopard Gepardi";
assert_eq!(s.rfind('L'), Some(13));
assert_eq!(s.rfind('é'), Some(14));
assert_eq!(s.rfind("pard"), Some(24));
More complex patterns with closures:
let s = "Löwe 老虎 Léopard";
assert_eq!(s.rfind(char::is_whitespace), Some(12));
assert_eq!(s.rfind(char::is_lowercase), Some(20));
Not finding the pattern:
let s = "Löwe 老虎 Léopard";
let x: &[_] = &['1', '2'];
assert_eq!(s.rfind(x), None);
1.0.0 · sourcepub fn split<P>(&self, pat: P) -> Split<'_, P> ⓘwhere
P: Pattern,
pub fn split<P>(&self, pat: P) -> Split<'_, P> ⓘwhere
P: Pattern,
Returns an iterator over substrings of this string slice, separated by characters matched by a pattern.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit
method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
let v: Vec<&str> = "".split('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
assert_eq!(v, ["lion", "", "tiger", "leopard"]);
let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);
let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
assert_eq!(v, ["abc", "def", "ghi"]);
let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
assert_eq!(v, ["lion", "tiger", "leopard"]);
If the pattern is a slice of chars, split on each occurrence of any of the characters:
let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
assert_eq!(v, ["2020", "11", "03", "23", "59"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "def", "ghi"]);
If a string contains multiple contiguous separators, you will end up with empty strings in the output:
let x = "||||a||b|c".to_string();
let d: Vec<_> = x.split('|').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
Contiguous separators are separated by the empty string.
let x = "(///)".to_string();
let d: Vec<_> = x.split('/').collect();
assert_eq!(d, &["(", "", "", ")"]);
Separators at the start or end of a string are neighbored by empty strings.
let d: Vec<_> = "010".split("0").collect();
assert_eq!(d, &["", "1", ""]);
When the empty string is used as a separator, it separates every character in the string, along with the beginning and end of the string.
let f: Vec<_> = "rust".split("").collect();
assert_eq!(f, &["", "r", "u", "s", "t", ""]);
Contiguous separators can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:
let x = " a b c".to_string();
let d: Vec<_> = x.split(' ').collect();
assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
It does not give you:
assert_eq!(d, &["a", "b", "c"]);
Use split_whitespace
for this behavior.
1.51.0 · sourcepub fn split_inclusive<P>(&self, pat: P) -> SplitInclusive<'_, P> ⓘwhere
P: Pattern,
pub fn split_inclusive<P>(&self, pat: P) -> SplitInclusive<'_, P> ⓘwhere
P: Pattern,
Returns an iterator over substrings of this string slice, separated by characters matched by a pattern.
Differs from the iterator produced by split
in that split_inclusive
leaves the matched part as the terminator of the substring.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
If the last element of the string is matched, that element will be considered the terminator of the preceding substring. That substring will be the last item returned by the iterator.
let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
.split_inclusive('\n').collect();
assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1.0.0 · sourcepub fn rsplit<P>(&self, pat: P) -> RSplit<'_, P> ⓘ
pub fn rsplit<P>(&self, pat: P) -> RSplit<'_, P> ⓘ
Returns an iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the split
method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
let v: Vec<&str> = "".rsplit('X').collect();
assert_eq!(v, [""]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
assert_eq!(v, ["leopard", "tiger", "", "lion"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
assert_eq!(v, ["leopard", "tiger", "lion"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "def", "abc"]);
1.0.0 · sourcepub fn split_terminator<P>(&self, pat: P) -> SplitTerminator<'_, P> ⓘwhere
P: Pattern,
pub fn split_terminator<P>(&self, pat: P) -> SplitTerminator<'_, P> ⓘwhere
P: Pattern,
Returns an iterator over substrings of the given string slice, separated by characters matched by a pattern.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Equivalent to split
, except that the trailing substring
is skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit_terminator
method can be used.
§Examples
let v: Vec<&str> = "A.B.".split_terminator('.').collect();
assert_eq!(v, ["A", "B"]);
let v: Vec<&str> = "A..B..".split_terminator(".").collect();
assert_eq!(v, ["A", "", "B", ""]);
let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["A", "B", "C", "D"]);
1.0.0 · sourcepub fn rsplit_terminator<P>(&self, pat: P) -> RSplitTerminator<'_, P> ⓘ
pub fn rsplit_terminator<P>(&self, pat: P) -> RSplitTerminator<'_, P> ⓘ
Returns an iterator over substrings of self
, separated by characters
matched by a pattern and yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
Equivalent to split
, except that the trailing substring is
skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.
For iterating from the front, the split_terminator
method can be
used.
§Examples
let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
assert_eq!(v, ["B", "A"]);
let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
assert_eq!(v, ["", "B", "", "A"]);
let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
assert_eq!(v, ["D", "C", "B", "A"]);
1.0.0 · sourcepub fn splitn<P>(&self, n: usize, pat: P) -> SplitN<'_, P> ⓘwhere
P: Pattern,
pub fn splitn<P>(&self, n: usize, pat: P) -> SplitN<'_, P> ⓘwhere
P: Pattern,
Returns an iterator over substrings of the given string slice, separated
by a pattern, restricted to returning at most n
items.
If n
substrings are returned, the last substring (the n
th substring)
will contain the remainder of the string.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
If the pattern allows a reverse search, the rsplitn
method can be
used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
assert_eq!(v, ["Mary", "had", "a little lambda"]);
let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
assert_eq!(v, ["lion", "", "tigerXleopard"]);
let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
assert_eq!(v, ["abcXdef"]);
let v: Vec<&str> = "".splitn(1, 'X').collect();
assert_eq!(v, [""]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["abc", "defXghi"]);
1.0.0 · sourcepub fn rsplitn<P>(&self, n: usize, pat: P) -> RSplitN<'_, P> ⓘ
pub fn rsplitn<P>(&self, n: usize, pat: P) -> RSplitN<'_, P> ⓘ
Returns an iterator over substrings of this string slice, separated by a
pattern, starting from the end of the string, restricted to returning at
most n
items.
If n
substrings are returned, the last substring (the n
th substring)
will contain the remainder of the string.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
For splitting from the front, the splitn
method can be used.
§Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
assert_eq!(v, ["lamb", "little", "Mary had a"]);
let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
assert_eq!(v, ["leopard", "tiger", "lionX"]);
let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
assert_eq!(v, ["leopard", "lion::tiger"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
assert_eq!(v, ["ghi", "abc1def"]);
1.52.0 · sourcepub fn split_once<P>(&self, delimiter: P) -> Option<(&str, &str)>where
P: Pattern,
pub fn split_once<P>(&self, delimiter: P) -> Option<(&str, &str)>where
P: Pattern,
Splits the string on the first occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
§Examples
assert_eq!("cfg".split_once('='), None);
assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1.52.0 · sourcepub fn rsplit_once<P>(&self, delimiter: P) -> Option<(&str, &str)>
pub fn rsplit_once<P>(&self, delimiter: P) -> Option<(&str, &str)>
Splits the string on the last occurrence of the specified delimiter and returns prefix before delimiter and suffix after delimiter.
§Examples
assert_eq!("cfg".rsplit_once('='), None);
assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1.2.0 · sourcepub fn matches<P>(&self, pat: P) -> Matches<'_, P> ⓘwhere
P: Pattern,
pub fn matches<P>(&self, pat: P) -> Matches<'_, P> ⓘwhere
P: Pattern,
Returns an iterator over the disjoint matches of a pattern within the given string slice.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatches
method can be used.
§Examples
let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
assert_eq!(v, ["1", "2", "3"]);
1.2.0 · sourcepub fn rmatches<P>(&self, pat: P) -> RMatches<'_, P> ⓘ
pub fn rmatches<P>(&self, pat: P) -> RMatches<'_, P> ⓘ
Returns an iterator over the disjoint matches of a pattern within this string slice, yielded in reverse order.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the matches
method can be used.
§Examples
let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
assert_eq!(v, ["abc", "abc", "abc"]);
let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
assert_eq!(v, ["3", "2", "1"]);
1.5.0 · sourcepub fn match_indices<P>(&self, pat: P) -> MatchIndices<'_, P> ⓘwhere
P: Pattern,
pub fn match_indices<P>(&self, pat: P) -> MatchIndices<'_, P> ⓘwhere
P: Pattern,
Returns an iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.
For matches of pat
within self
that overlap, only the indices
corresponding to the first match are returned.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, e.g., char
, but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatch_indices
method can be used.
§Examples
let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
assert_eq!(v, [(1, "abc"), (4, "abc")]);
let v: Vec<_> = "ababa".match_indices("aba").collect();
assert_eq!(v, [(0, "aba")]); // only the first `aba`
1.5.0 · sourcepub fn rmatch_indices<P>(&self, pat: P) -> RMatchIndices<'_, P> ⓘ
pub fn rmatch_indices<P>(&self, pat: P) -> RMatchIndices<'_, P> ⓘ
Returns an iterator over the disjoint matches of a pattern within self
,
yielded in reverse order along with the index of the match.
For matches of pat
within self
that overlap, only the indices
corresponding to the last match are returned.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the match_indices
method can be used.
§Examples
let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
assert_eq!(v, [(4, "abc"), (1, "abc")]);
let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
assert_eq!(v, [(2, "aba")]); // only the last `aba`
1.0.0 · sourcepub fn trim(&self) -> &str
pub fn trim(&self) -> &str
Returns a string slice with leading and trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
, which includes newlines.
§Examples
let s = "\n Hello\tworld\t\n";
assert_eq!("Hello\tworld", s.trim());
1.30.0 · sourcepub fn trim_start(&self) -> &str
pub fn trim_start(&self) -> &str
Returns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
, which includes newlines.
§Text directionality
A string is a sequence of bytes. start
in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
§Examples
Basic usage:
let s = "\n Hello\tworld\t\n";
assert_eq!("Hello\tworld\t\n", s.trim_start());
Directionality:
let s = " English ";
assert!(Some('E') == s.trim_start().chars().next());
let s = " עברית ";
assert!(Some('ע') == s.trim_start().chars().next());
1.30.0 · sourcepub fn trim_end(&self) -> &str
pub fn trim_end(&self) -> &str
Returns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
, which includes newlines.
§Text directionality
A string is a sequence of bytes. end
in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
§Examples
Basic usage:
let s = "\n Hello\tworld\t\n";
assert_eq!("\n Hello\tworld", s.trim_end());
Directionality:
let s = " English ";
assert!(Some('h') == s.trim_end().chars().rev().next());
let s = " עברית ";
assert!(Some('ת') == s.trim_end().chars().rev().next());
1.0.0 · sourcepub fn trim_left(&self) -> &str
👎Deprecated since 1.33.0: superseded by trim_start
pub fn trim_left(&self) -> &str
trim_start
Returns a string slice with leading whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
§Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
§Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!("Hello\tworld\t", s.trim_left());
Directionality:
let s = " English";
assert!(Some('E') == s.trim_left().chars().next());
let s = " עברית";
assert!(Some('ע') == s.trim_left().chars().next());
1.0.0 · sourcepub fn trim_right(&self) -> &str
👎Deprecated since 1.33.0: superseded by trim_end
pub fn trim_right(&self) -> &str
trim_end
Returns a string slice with trailing whitespace removed.
‘Whitespace’ is defined according to the terms of the Unicode Derived
Core Property White_Space
.
§Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
§Examples
Basic usage:
let s = " Hello\tworld\t";
assert_eq!(" Hello\tworld", s.trim_right());
Directionality:
let s = "English ";
assert!(Some('h') == s.trim_right().chars().rev().next());
let s = "עברית ";
assert!(Some('ת') == s.trim_right().chars().rev().next());
1.0.0 · sourcepub fn trim_matches<P>(&self, pat: P) -> &str
pub fn trim_matches<P>(&self, pat: P) -> &str
Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.
The pattern can be a char
, a slice of char
s, or a function
or closure that determines if a character matches.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
A more complex pattern, using a closure:
assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
1.30.0 · sourcepub fn trim_start_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
pub fn trim_start_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. start
in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side, and for right-to-left languages like
Arabic or Hebrew, this will be the right side.
§Examples
assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
1.45.0 · sourcepub fn strip_prefix<P>(&self, prefix: P) -> Option<&str>where
P: Pattern,
pub fn strip_prefix<P>(&self, prefix: P) -> Option<&str>where
P: Pattern,
Returns a string slice with the prefix removed.
If the string starts with the pattern prefix
, returns the substring after the prefix,
wrapped in Some
. Unlike trim_start_matches
, this method removes the prefix exactly once.
If the string does not start with prefix
, returns None
.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
assert_eq!("foo:bar".strip_prefix("bar"), None);
assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
1.45.0 · sourcepub fn strip_suffix<P>(&self, suffix: P) -> Option<&str>
pub fn strip_suffix<P>(&self, suffix: P) -> Option<&str>
Returns a string slice with the suffix removed.
If the string ends with the pattern suffix
, returns the substring before the suffix,
wrapped in Some
. Unlike trim_end_matches
, this method removes the suffix exactly once.
If the string does not end with suffix
, returns None
.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Examples
assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
assert_eq!("bar:foo".strip_suffix("bar"), None);
assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
1.30.0 · sourcepub fn trim_end_matches<P>(&self, pat: P) -> &str
pub fn trim_end_matches<P>(&self, pat: P) -> &str
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. end
in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side, and for right-to-left languages like
Arabic or Hebrew, this will be the left side.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
A more complex pattern, using a closure:
assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
1.0.0 · sourcepub fn trim_left_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
👎Deprecated since 1.33.0: superseded by trim_start_matches
pub fn trim_left_matches<P>(&self, pat: P) -> &strwhere
P: Pattern,
trim_start_matches
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. ‘Left’ in this context means the first position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the right side, not the left.
§Examples
assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
1.0.0 · sourcepub fn trim_right_matches<P>(&self, pat: P) -> &str
👎Deprecated since 1.33.0: superseded by trim_end_matches
pub fn trim_right_matches<P>(&self, pat: P) -> &str
trim_end_matches
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, a slice of char
s, or a
function or closure that determines if a character matches.
§Text directionality
A string is a sequence of bytes. ‘Right’ in this context means the last position of that byte string; for a language like Arabic or Hebrew which are ‘right to left’ rather than ‘left to right’, this will be the left side, not the right.
§Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
let x: &[_] = &['1', '2'];
assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
A more complex pattern, using a closure:
assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
1.0.0 · sourcepub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err>where
F: FromStr,
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err>where
F: FromStr,
Parses this string slice into another type.
Because parse
is so general, it can cause problems with type
inference. As such, parse
is one of the few times you’ll see
the syntax affectionately known as the ‘turbofish’: ::<>
. This
helps the inference algorithm understand specifically which type
you’re trying to parse into.
parse
can parse into any type that implements the FromStr
trait.
§Errors
Will return Err
if it’s not possible to parse this string slice into
the desired type.
§Examples
Basic usage
let four: u32 = "4".parse().unwrap();
assert_eq!(4, four);
Using the ‘turbofish’ instead of annotating four
:
let four = "4".parse::<u32>();
assert_eq!(Ok(4), four);
Failing to parse:
let nope = "j".parse::<u32>();
assert!(nope.is_err());
1.23.0 · sourcepub fn is_ascii(&self) -> bool
pub fn is_ascii(&self) -> bool
Checks if all characters in this string are within the ASCII range.
§Examples
let ascii = "hello!\n";
let non_ascii = "Grüße, Jürgen ❤";
assert!(ascii.is_ascii());
assert!(!non_ascii.is_ascii());
sourcepub fn as_ascii(&self) -> Option<&[AsciiChar]>
🔬This is a nightly-only experimental API. (ascii_char
)
pub fn as_ascii(&self) -> Option<&[AsciiChar]>
ascii_char
)If this string slice is_ascii
, returns it as a slice
of ASCII characters, otherwise returns None
.
1.23.0 · sourcepub fn eq_ignore_ascii_case(&self, other: &str) -> bool
pub fn eq_ignore_ascii_case(&self, other: &str) -> bool
Checks that two strings are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b)
,
but without allocating and copying temporaries.
§Examples
assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
1.23.0 · sourcepub fn make_ascii_uppercase(&mut self)
pub fn make_ascii_uppercase(&mut self)
Converts this string to its ASCII upper case equivalent in-place.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To return a new uppercased value without modifying the existing one, use
to_ascii_uppercase()
.
§Examples
let mut s = String::from("Grüße, Jürgen ❤");
s.make_ascii_uppercase();
assert_eq!("GRüßE, JüRGEN ❤", s);
1.23.0 · sourcepub fn make_ascii_lowercase(&mut self)
pub fn make_ascii_lowercase(&mut self)
Converts this string to its ASCII lower case equivalent in-place.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To return a new lowercased value without modifying the existing one, use
to_ascii_lowercase()
.
§Examples
let mut s = String::from("GRÜßE, JÜRGEN ❤");
s.make_ascii_lowercase();
assert_eq!("grÜße, jÜrgen ❤", s);
1.80.0 · sourcepub fn trim_ascii_start(&self) -> &str
pub fn trim_ascii_start(&self) -> &str
Returns a string slice with leading ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace
.
§Examples
assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
assert_eq!(" ".trim_ascii_start(), "");
assert_eq!("".trim_ascii_start(), "");
1.80.0 · sourcepub fn trim_ascii_end(&self) -> &str
pub fn trim_ascii_end(&self) -> &str
Returns a string slice with trailing ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace
.
§Examples
assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
assert_eq!(" ".trim_ascii_end(), "");
assert_eq!("".trim_ascii_end(), "");
1.80.0 · sourcepub fn trim_ascii(&self) -> &str
pub fn trim_ascii(&self) -> &str
Returns a string slice with leading and trailing ASCII whitespace removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace
.
§Examples
assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
assert_eq!(" ".trim_ascii(), "");
assert_eq!("".trim_ascii(), "");
1.34.0 · sourcepub fn escape_debug(&self) -> EscapeDebug<'_> ⓘ
pub fn escape_debug(&self) -> EscapeDebug<'_> ⓘ
Returns an iterator that escapes each char in self
with char::escape_debug
.
Note: only extended grapheme codepoints that begin the string will be escaped.
§Examples
As an iterator:
for c in "❤\n!".escape_debug() {
print!("{c}");
}
println!();
Using println!
directly:
println!("{}", "❤\n!".escape_debug());
Both are equivalent to:
println!("❤\\n!");
Using to_string
:
assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
1.34.0 · sourcepub fn escape_default(&self) -> EscapeDefault<'_> ⓘ
pub fn escape_default(&self) -> EscapeDefault<'_> ⓘ
Returns an iterator that escapes each char in self
with char::escape_default
.
§Examples
As an iterator:
for c in "❤\n!".escape_default() {
print!("{c}");
}
println!();
Using println!
directly:
println!("{}", "❤\n!".escape_default());
Both are equivalent to:
println!("\\u{{2764}}\\n!");
Using to_string
:
assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
1.34.0 · sourcepub fn escape_unicode(&self) -> EscapeUnicode<'_> ⓘ
pub fn escape_unicode(&self) -> EscapeUnicode<'_> ⓘ
Returns an iterator that escapes each char in self
with char::escape_unicode
.
§Examples
As an iterator:
for c in "❤\n!".escape_unicode() {
print!("{c}");
}
println!();
Using println!
directly:
println!("{}", "❤\n!".escape_unicode());
Both are equivalent to:
println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
Using to_string
:
assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
sourcepub fn substr_range(&self, substr: &str) -> Option<Range<usize>>
🔬This is a nightly-only experimental API. (substr_range
)
pub fn substr_range(&self, substr: &str) -> Option<Range<usize>>
substr_range
)Returns the range that a substring points to.
Returns None
if substr
does not point within self
.
Unlike str::find
, this does not search through the string.
Instead, it uses pointer arithmetic to find where in the string
substr
is derived from.
This is useful for extending str::split
and similar methods.
Note that this method may return false positives (typically either
Some(0..0)
or Some(self.len()..self.len())
) if substr
is a
zero-length str
that points at the beginning or end of another,
independent, str
.
§Examples
#![feature(substr_range)]
let data = "a, b, b, a";
let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
assert_eq!(iter.next(), Some(0..1));
assert_eq!(iter.next(), Some(3..4));
assert_eq!(iter.next(), Some(6..7));
assert_eq!(iter.next(), Some(9..10));
sourcepub fn as_str(&self) -> &str
🔬This is a nightly-only experimental API. (str_as_str
)
pub fn as_str(&self) -> &str
str_as_str
)Returns the same string as a string slice &str
.
This method is redundant when used directly on &str
, but
it helps dereferencing other string-like types to string slices,
for example references to Box<str>
or Arc<str>
.
1.0.0 · sourcepub fn replace<P>(&self, from: P, to: &str) -> Stringwhere
P: Pattern,
pub fn replace<P>(&self, from: P, to: &str) -> Stringwhere
P: Pattern,
Replaces all matches of a pattern with another string.
replace
creates a new String
, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice.
§Examples
Basic usage:
let s = "this is old";
assert_eq!("this is new", s.replace("old", "new"));
assert_eq!("than an old", s.replace("is", "an"));
When the pattern doesn’t match, it returns this string slice as String
:
let s = "this is old";
assert_eq!(s, s.replace("cookie monster", "little lamb"));
1.16.0 · sourcepub fn replacen<P>(&self, pat: P, to: &str, count: usize) -> Stringwhere
P: Pattern,
pub fn replacen<P>(&self, pat: P, to: &str, count: usize) -> Stringwhere
P: Pattern,
Replaces first N matches of a pattern with another string.
replacen
creates a new String
, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice at most count
times.
§Examples
Basic usage:
let s = "foo foo 123 foo";
assert_eq!("new new 123 foo", s.replacen("foo", "new", 2));
assert_eq!("faa fao 123 foo", s.replacen('o', "a", 3));
assert_eq!("foo foo new23 foo", s.replacen(char::is_numeric, "new", 1));
When the pattern doesn’t match, it returns this string slice as String
:
let s = "this is old";
assert_eq!(s, s.replacen("cookie monster", "little lamb", 10));
1.2.0 · sourcepub fn to_lowercase(&self) -> String
pub fn to_lowercase(&self) -> String
Returns the lowercase equivalent of this string slice, as a new String
.
‘Lowercase’ is defined according to the terms of the Unicode Derived Core Property
Lowercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a String
instead of modifying the
parameter in-place.
§Examples
Basic usage:
let s = "HELLO";
assert_eq!("hello", s.to_lowercase());
A tricky example, with sigma:
let sigma = "Σ";
assert_eq!("σ", sigma.to_lowercase());
// but at the end of a word, it's ς, not σ:
let odysseus = "ὈΔΥΣΣΕΎΣ";
assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());
Languages without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_lowercase());
1.2.0 · sourcepub fn to_uppercase(&self) -> String
pub fn to_uppercase(&self) -> String
Returns the uppercase equivalent of this string slice, as a new String
.
‘Uppercase’ is defined according to the terms of the Unicode Derived Core Property
Uppercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a String
instead of modifying the
parameter in-place.
§Examples
Basic usage:
let s = "hello";
assert_eq!("HELLO", s.to_uppercase());
Scripts without case are not changed:
let new_year = "农历新年";
assert_eq!(new_year, new_year.to_uppercase());
One character can become multiple:
let s = "tschüß";
assert_eq!("TSCHÜSS", s.to_uppercase());
1.16.0 · sourcepub fn repeat(&self, n: usize) -> String
pub fn repeat(&self, n: usize) -> String
Creates a new String
by repeating a string n
times.
§Panics
This function will panic if the capacity would overflow.
§Examples
Basic usage:
assert_eq!("abc".repeat(4), String::from("abcabcabcabc"));
A panic upon overflow:
// this will panic at runtime
let huge = "0123456789abcdef".repeat(usize::MAX);
1.23.0 · sourcepub fn to_ascii_uppercase(&self) -> String
pub fn to_ascii_uppercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase
.
To uppercase ASCII characters in addition to non-ASCII characters, use
to_uppercase
.
§Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("GRüßE, JüRGEN ❤", s.to_ascii_uppercase());
1.23.0 · sourcepub fn to_ascii_lowercase(&self) -> String
pub fn to_ascii_lowercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase
.
To lowercase ASCII characters in addition to non-ASCII characters, use
to_lowercase
.
§Examples
let s = "Grüße, Jürgen ❤";
assert_eq!("grüße, jürgen ❤", s.to_ascii_lowercase());
Trait Implementations§
§impl Add<&str> for CompactString
impl Add<&str> for CompactString
§impl AddAssign<&str> for CompactString
impl AddAssign<&str> for CompactString
§fn add_assign(&mut self, rhs: &str)
fn add_assign(&mut self, rhs: &str)
+=
operation. Read more§impl AsRef<[u8]> for CompactString
impl AsRef<[u8]> for CompactString
§impl AsRef<OsStr> for CompactString
impl AsRef<OsStr> for CompactString
§impl AsRef<Path> for CompactString
impl AsRef<Path> for CompactString
§impl AsRef<str> for CompactString
impl AsRef<str> for CompactString
§impl Borrow<str> for CompactString
impl Borrow<str> for CompactString
§impl BorrowMut<str> for CompactString
impl BorrowMut<str> for CompactString
§fn borrow_mut(&mut self) -> &mut str
fn borrow_mut(&mut self) -> &mut str
§impl Clone for CompactString
impl Clone for CompactString
§fn clone(&self) -> CompactString
fn clone(&self) -> CompactString
§fn clone_from(&mut self, source: &CompactString)
fn clone_from(&mut self, source: &CompactString)
source
. Read more§impl Debug for CompactString
impl Debug for CompactString
§impl Default for CompactString
impl Default for CompactString
§fn default() -> CompactString
fn default() -> CompactString
§impl Deref for CompactString
impl Deref for CompactString
§impl Display for CompactString
impl Display for CompactString
§impl<'a> Extend<&'a char> for CompactString
impl<'a> Extend<&'a char> for CompactString
§fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = &'a char>,
fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = &'a char>,
source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)§impl<'a> Extend<&'a str> for CompactString
impl<'a> Extend<&'a str> for CompactString
§fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = &'a str>,
fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = &'a str>,
source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)§impl Extend<Box<str>> for CompactString
impl Extend<Box<str>> for CompactString
source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)§impl Extend<CompactString> for CompactString
impl Extend<CompactString> for CompactString
§fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = CompactString>,
fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = CompactString>,
source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)§impl<'a> Extend<CompactString> for Cow<'a, str>
impl<'a> Extend<CompactString> for Cow<'a, str>
§fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = CompactString>,
fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = CompactString>,
source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)§impl<'a> Extend<Cow<'a, str>> for CompactString
impl<'a> Extend<Cow<'a, str>> for CompactString
source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)§impl Extend<String> for CompactString
impl Extend<String> for CompactString
§fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = String>,
fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = String>,
source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)§impl Extend<char> for CompactString
impl Extend<char> for CompactString
§fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = char>,
fn extend<T>(&mut self, iter: T)where
T: IntoIterator<Item = char>,
source§fn extend_one(&mut self, item: A)
fn extend_one(&mut self, item: A)
extend_one
)source§fn extend_reserve(&mut self, additional: usize)
fn extend_reserve(&mut self, additional: usize)
extend_one
)